Úlohy: 1–20 / 130

1. Vystřižené rovnoramenné trojúhelníky

Jsou dány dva shodné rovnoramenné trojúhelníky, z nichž každý má obvod 100 cm. Nejprve z těchto trojúhelníků složíme rovnoběžník tak, že je k sobě přiložíme rameny. Poté z nich složíme kosočtverec tak, že je k sobě přiložíme základnami. Rovnoběžník má o 4 cm kratší obvod než kosočtverec.

Vypočítejte délky stran trojúhelníků.
Řešení
Základna má délku 32 cm, rameno má délku 34 cm.

2. Plnící linky v mlékárně

V mlékárně mají dvě linky pro plnění krabic mléka. Nová linka je o 50 % rychlejší, než stará linka. Když pracují obě linky současně, naplní běžné denní množství krabic mléka o 6 hodin dříve, než když pracovala pouze stará linka.

Vypočítejte, za jak dlouho naplní denní množství krabic mléka, bude-li pracovat:
a)   pouze stará linka,
b)   pouze nová linka,
c)   obě linky současně.
Řešení
a)   Bude-li pracovat pouze stará linka, naplní denní množství krabic za 10 hodin a 0 minut.
b)   Bude-li pracovat pouze nová linka, naplní denní množství krabic za 6 hodin a 40 minut.
c)   Budou-li pracovat obě linky současně, naplní denní množství krabic za 4 hodin a 0 minut.

3. Výška pravidelného čtyřbokého jehlanu

Pravidelný čtyřboký jehlan má objem 2 160 litrů a délku podstavné hrany 12 dm.

Vypočítejte výšku jehlanu.
Řešení
Výška jehlanu je 45 dm.

4. Pět hodů mincí

Vypočítejte, jaká je pravděpodobnost, že při hodu mincí 5× po sobě padne hlava. (Výsledek zapište ve tvaru zlomku.)
Řešení
Pravděpodobnost je .

5. Rozdělený pravidelný čtyřboký jehlan

Je dán pravidelný čtyřboký jehlan s délkou podstavné hrany a = 15 cm a výškou v = 21 cm. Rovnoběžně s podstavou vedeme dvě roviny tak, že rozdělí výšku jehlanu na tři stejné části.

Vypočítejte poměr objemů vzniklých 3 těles od nejmenšího po největší.
Řešení
Poměr je 1:7:19.

6. Peníze Soni, Emy a Zuzany

Soňa a Ema mají dohromady 200 Kč, Ema a Zuzana mají dohromady 150 Kč, Soňa se Zuzanou mají dohromady 190 Kč.

Vypočítejte, kolik Kč má Soňa, kolik Ema a kolik Zuzana.
Řešení
Soňa má 120 Kč, Ema má 80 Kč a Zuzana má 70 Kč.

7. Kužel a válec

Rotační válec má objem 120 dm3. Rotační kužel má stejně velký objem i poloměr podstavy jako rotační válec.

Vypočítejte, o kolik procent je větší výška rotačního kužele než výška rotačního válce.
Řešení
Výška rotačního kužele je větší o 200 %.

8. Zvětšení stran obdélníku

Jedna strana obdélníku byla zvětšena o 20 % a druhá o 25 %.

Vypočítejte, o kolik procent se zvětšil obsah obdélníku.
Řešení
Obsah obdélníku se zvětšil o 50 %.

9. Výběr ovoce

V obchodě je k dispozici 5 různých druhů ovoce: jablka, hrušky, meruňky, banány a kiwi.

Vypočítejte, kolik možností výběru 3 kusů ovoce různého druhu existuje.
Řešení
Existuje 10 různých možností, jak vybrat 3 kusy ovoce z 5 různých druhů.

10. Kužel vyříznutý z válce

Těleso vzniklo tak, že byl do válce o průměru 12 cm a výšce 20 cm vyříznut kužel o stejném průměru a stejné výšce.

Vypočítej objem takto vzniklého tělesa.
Řešení
Tedy objem takto vzniklého tělesa je 1 507,96 cm3.

11. Objem válce a kužele

Je dán válec s poloměrem základny 6 cm a výškou 10 cm. Na vrcholu tohoto válce je umístěn kužel se stejným poloměrem základny a polovinou výšky válce.

Vypočítejte objem tohoto složeného tělesa. (Výsledek zaokrouhlete na dvě desetinná místa.)
Řešení
Objem složeného tělesa je 1 319,47 cm3.

12. Sinus a cosinus úhlů

Vypočítejte zpaměti sin a cos uvedených úhlů:
a)   
b)   
c)   
d)   
Řešení
a)   
b)   
c)   
d)   

13. Kvadratické lomené rovnice

Vyřešte kvadratické lomené nerovnice:
a)   
b)   
c)   
d)   
Řešení
a)   
b)   
c)   
d)   

14. Kvadratické lomené rovnice

Vyřešte kvadratické lomené rovnice:
a)   
b)   
c)   
d)   
Řešení
a)   
b)   
c)   
d)   

15. Zapomenutý PIN

Tomáš zapomněl čtyřmístný PIN, pamatuje si první tři čísla. Ví, že čtvrté číslo je liché.

Vypočítejte pravděpodobnost v procentech, že se mu PIN podaří na jeden pokus určit.
Řešení
Pravděpodobnost, že Tomáš určí správně PIN, je 20 %.

16. Anketa

Anketa provedená u 200 respondentů zjišťovala, jaký mají rádi sport. Na výběr byl fotbal, hokej a basketbal. Přinesla tyto výsledky: Hokej je oblíben u 78 respondentů, basketbal u 75 respondentů a fotbal u 101 respondentů. Dále se zjistilo, že všechny tři sporty jsou oblíbené 28 respondenty. Těch, kteří mají rádi právě dva z těchto tří sportů, je 22, z nich právě polovina má ráda dvojici fotbal a basketbal. Respondentů, kteří mají rádi jenom basketbal, je o 7 méně než těch, kteří mají rádi jen hokej.

Vypočítejte:
a)   kolik studentů má rádo fotbal,
b)   kolik studentů má rádo hokej,
c)   kolik studentů má rádo basketbal,
d)   kolik studentů nemá rádo ani jeden z uvedených sportů.
Řešení
a)   Fotbal má rádo 101 respondentů.
b)   Hokej má rádo 78 respondentů.
c)   Basketbal má rádo 75 respondentů.
d)   24 nemá rádo ani jeden z uvedených sportů.

17. Obsah obdélníku

Obsah obdélníku je 81,25 cm2. Zvětšíme-li jeho délku o 5 mm, zvětší se jeho obsah o 4 %.

Určete v milimetrech rozměry obdélníku.
Řešení
Šířka obdélníku je 125 mm, délka obdélníku je 65 mm.

18. Šestiboký jehlan

Šestiboký jehlan má obvod 120 cm, délku boční hrany 25 cm.

Vypočítejte v cm3 objem jehlanu. (Zaokrouhlete na dvě desetinná místa.)
Řešení
Objem jehlanu je 5 196,15 cm3

19. Grafy lineárních funkcí

Jsou dány grafy lineárních funkcí.

Určete zpaměti funkční předpis.
a)    Graf lineární funkce
b)    Graf lineární funkce
c)    Graf lineární funkce
d)    Graf lineární funkce
Řešení
a)   
b)   
c)   
d)   

20. Opsaná a vepsaná koule

Krychli o objemu 4 096 cm3 je opsána a vepsána koule.

Vypočítejte, kolikrát je větší objem opsané koule než koule vepsané. (Zaokrouhlete na dvě desetinná místa.)
Řešení
Objem opsané koule je 5,20krát větší než objem koule vepsané.