Úlohy: 1–9 / 9

1

1. Hodnota výrazu

Vypočítej hodnotu výrazu y = 3x22x + 3 pro:
a)   x = -2,
b)   x = 1,
c)   x = 0,
d)   x = 0,50.
Řešení
a)   19
b)   -2
c)   3
d)   2,75

2. Hodnota výrazu

Je dán výraz .

Vypočítejte hodnotu výrazu pro:
a)   x = 1
b)   x = 0
c)   x = 4
d)   x = -2
Řešení
a)   2,50
b)   3
c)   1
d)   4

3. Hodnota výrazu

Je dán výraz .

Vypočítejte hodnotu výrazu pro hodnoty proměnných:
a)    ,
b)    ,
c)    ,
d)    ,
Řešení
a)   -29
b)   -1
c)   -20
d)   -77

4. Výrazy

Zapište jako výrazy:
a)   5násobek součtu čísel a a b,
b)   součin čísel 5 a f zmenšený o 6
c)   rozdíl 3násobku čísla r a čísla 8
d)   3násobek rozdílu čísla r a čísla 8
e)   druhá mocnina součtu čísel a a b
f)   pětina čísla s zmenšená o polovinu čísla t
g)   součin čísel a a b zmenšený o jejich podíl
h)   podíl čísel x a 2 zvětšený o y
Řešení
a)   
b)   
c)   
d)   
e)   
f)   
g)   
h)   

5. Výrazy

Zapište výrazy:
a)   o 7 menší než x
b)   o 10 větší než y
c)   3krát menší než z
d)   5krát větší než a
e)   o polovinu menší než b
f)   o c menší než 15
g)   o m menší než n
h)   akrát menší než b
Řešení
a)   
b)   
c)   
d)   
e)   
f)   
g)   
h)   

6. Výrazy

Zapište jako výraz:
a)   součin čísel r a 4
b)   rozdíl čísel a a b
c)   pětinásobek čísla x
d)   číslo x zvětšené o 8
e)   podíl čísel m a n
f)   číslo 12 zmenšené o t
g)   číslo 5 vydělené číslem s
h)   součet čísel e a f
Řešení
a)   
b)   
c)   
d)   
e)   
f)   
g)   
h)   

7. Výrazy

Kniha stála x Kč.

Vypočítejte, kolik korun stála hra, když stála:
a)   o 200 Kč víc než kniha,
b)   3krát více než kniha,
c)   o 20 korun méně než dvojnásobek knihy,
d)   čtvrtinu knihy.
Řešení
a)   
b)   
c)   
d)   

8. Zapsání výrazů

Zapište jako výraz:
a)   rozdíl výrazů 3x-7 a ,
b)   součin čísla 3 a výrazu ,
c)   podíl výrazů a ,
d)   výraz umocněný na druhou.
Řešení
a)   
b)   
c)   
d)   

9. Úprava výrazů 1

Zjednodušte výrazy:
a)   \( 2 \cdot (x-4) - 3x + 6 + 3 \cdot (2x-4) = \)
b)   \( 3x - 3 \cdot (4 - 2x) - 5x - (x - 7) = \)
c)   \( - x - (-x - 2) - 5x + 2 \cdot (2x + 1) = \)
d)   \( x - 3 \cdot [2 - 3 \cdot (2x + 1)] - 5x - 4 \cdot (x + 2) = \)
Řešení
a)   \( 5x - 14 \)
b)   \( 3x - 5 \)
c)   \( - x + 4 \)
d)   \( 10x - 5 \)
 
1