Úlohy: 81–100 / 140

81. Pizza v krabicích

Na stole jsou dvě krabice pizzy stejné velikosti. V jedné krabici je pizzy a ve druhé pizzy. Potom kuchař rozdělí obě pizzy na dílky tak, že jeden dílek je pizzy.

Určete, kolik kousků pizzy bylo v krabicích.
Řešení
V krabicích bylo 10 kousků pizzy.

82. Doplnění poměru

Doplň místo x takové číslo, aby platila rovnost.
a)   \( \frac{5}{6} = \frac{15}{x} \)
b)   \( \frac{3}{2} + 1 = \frac{x}{10} \)
Řešení
a)   18
b)   25

83. Hrušky

Filip má 8 hrušek. Filip má o 5 hrušek méně než Radek.

Vypočítejte, kolik hrušek mě Radek.
Řešení
Radek má 13 hrušek.

84. Šestiboký hranol

Kolmý šestiboký hranol byl vytvořen opracováním krychle o hraně délky 8 cm. Podstava hranolu vznikla ze čtvercové stěny původní krychle oddělením 4 shodných pravoúhlých trojúhelníků s odvěsnami délek 3 cm a 4 cm. Výška hranolu je 8 cm.

Vypočítejte objem šestibokého hranolu.
Řešení
Objem šestibokého hranolu je 320 cm3.

85. Části čísel

Vypočítejte, o kolik jsou dvě sedminy z 420 menší než tři osminy z 960.
Řešení
Rozdíl je 240.

86. Úhly v lichoběžníku

O úhlech v lichoběžníku je známo: velikost úhel gama je 121 °, velikost úhlu alfa je 2/3 úhlu delta.

Vypočítejte rozdíl úhlů alfa a beta.
Řešení
Rozdíl úhlů alfa a beta je 13 °.

87. Střední příčka lichoběžníku

Obsah lichoběžníku je 111,80 cm2 a jeho výška 6,50 cm.

Vypočítejte v cm délku střední příčky lichoběžníku.
Řešení
Velikost střední příčky lichoběžníku je 17,20 cm.

88. Cyklistický závod

Po 30 km je cyklista v jedné pětině závodu.

Vypočtěte, jak dlouhý je celý závod.
Řešení
Závod je dlouhý 150 km.

89. Průměrná denní teplota

Teplota během dne byla pravidelně měřena. Ráno byla teplota -3 °C. Ve poledne teplota vystoupila na 12 °C. Po setmění teplota opět klesla na -6 °C.

Vypočtěte ve °C, jaká byla průměrná denní teplota.
Řešení
Průměrná denní teplota byla 3,75 °C.

90. Číselná osa

Je dána číselná osa a na ní jsou vyznačena čísla 258 a 326.

Vypočítejte, které číslo leží na číselné ose přesně ve středu mezi těmito čísly.
Řešení
Ve středu mezi zadanými čísly leží číslo 292.

91. Obsah kosočtverce

Obvod kosočtverce, který má délky úhlopříček v poměru 3:4 je 40 cm.

Vypočtěte, kolik cm2 je jeho obsah.
Řešení
Obsah kosočtverce je 96 cm2

92. Dům na pozemku

Pozemek, na kterém se má stavět rodinný dům, má tvar lichoběžníku se základnami o délce 42 m a 18 m, vzdálenost základen je 23 m. Dům bude mít podle projektu 146 m2 zastavěné plochy.

Vypočtěte, kolik čtverečných metrů pozemku zůstane nezastaveno.
Řešení
Zůstane nezastavěno 337 m2 plochy pozemku.

93. Válcová nádrž

Nádrž tvaru válce o průměru 100 cm je naplněná z 50 % a je v ní 78 500 l vody.

Vypočítejte, jaká je výška nádrže. (Zaokrouhlete na celé metry.)
Řešení
Výška nádrže je 50 m.

94. Vypočítejte zlomky

Vypočítejte:
a)    z 8
b)    ze 39
c)    z 56
d)    z 45
e)    z 42
f)    z 21
Řešení
a)   2
b)   13
c)   8
d)   18
e)   35
f)   9

95. Objem krabice

Krabice má výšku 55 cm a šířku 40 cm. Objem krabice je 180 litrů.

Vypočtěte
a)   a na dvě desetinná místa zapište, kolik cm měří délka krabice,
b)   kapacitu krabice v cm3.
Řešení
a)   Délka krabice je 81,82 cm.
b)   Objem krabice je 180 000 cm3

96. Náhodné autobusy

Ve městě Náhoda zrušily jízdní řády a autobusy MHD jezdí zcela náhodně. Představte si, že stojíte na zastávce, na které zastavuje 5 autobusů s čísly 12, 14, 15, 21 a 27 a vy se dvěma z nich můžete dostat domů.

Vypočtěte v procentech:
a)   jaká je pravděpodobnost, že se můžete dostat domů hned prvním autobusem, který přijede,
b)   jaká je pravděpodobnost, že se nemůžete dostat domů hned prvním autobusem, který přijede,
c)   jaká je pravděpodobnost, že jako první přijede autobus, jehož číslo je dělitelné třemi.
Řešení
a)   Pravděpodobnost je 40 %.
b)   Pravděpodobnost je 60 %.
c)   Pravděpodobnost je 80 %.

97. Zvětšení kruhu

Kruh 1 má poloměr a. Kruh 2 má poloměr dvakrát větší.

a)   Vypočtěte, kolikrát větší průměr má kruh 2 než kruh 1.
b)   Vypočtěte, kolikrát větší obvod má kruh 2 než kruh 1.
c)   Vypočtěte, kolikrát větší obsah má kruh 2 než kruh 1.
Řešení
a)   Kruh 2 má 2krát větší průměr než kruh 1.
b)   Kruh 2 má 2krát větší obvod než kruh 1.
c)   Kruh 2 má 4krát větší obsah než kruh 1.

98. Student u zkoušky

Při zkoušce si student náhodně vylosuje tři otázky ze 30 možných. K úspěšnému složení zkoušky musí všechny tři otázky správně zodpovědět. Student umí 70 % otázek.

Vypočtěte, jaká je pravděpodobnost, že student u zkoušky uspěje.
Řešení
Pravděpodobnost je 32,76 %.

99. Objem jehlanu

Je dán pravidelný čtyřbokého jehlanu. Výška jehlanu je 30 cm a stěnová výška je 50 cm.

Vypočtěte v dm3 objem jehlanu.
Řešení
Objem jehlanu je 64 dm3.

100. Hromy, blesky

Zvuk se šíří rychlostí 1 km za 3 sekundy. Hrom bylo slyšet 12 sekund po blesku.

Vypočtěte v kilometrech, v jaké vzdálenosti je bouře.
Řešení
Bouře je ve vzdálenosti 4 km.