Úlohy: 221–240 / 297

221. Palačinky

Palačinku si můžete dát s malinovou, jahodovou, nebo jablečnou náplní. Můžete si ji dát bez polevy, s karamelovou, nebo čokoládovou polevu. Také si můžete nebo nemusíte dát na palačinku šlehačku.

Vypočtěte, kolika různými způsoby je možné si dát palačinku.
Řešení
Palačinku si můžete dát 18 různými způsoby.
Matematická úloha – Palačinky

222. V železářství

V železářství prodávali 1 kg hřebíků za 400 Kč a 1 kg vrutů za 800 Kč. Celkem prodali 5 kg a utržili 3 200 Kč.

Vypočtěte, kolik kg hřebíků a kolik kg vrutů v železářství prodali.
Řešení
V železářství prodali v 2 kg hřebíků a 3 kg vrutů.
Matematická úloha – V železářství

223. Účet v bance

Na účtu v bance bylo 6 600 Kč, za což byl na konci roku připsán úrok 330

Vypočtěte, kolik procent byla úroková míra.
Řešení
Úroková míra byla 5 %.
Matematická úloha – Účet v bance

224. Procenta z grafu

V grafu jsou tmavou barvou vyznačeny části celku.

Určete, kolik procent znázorňují.
a)    Procenta z grafu
b)    Procenta z grafu
c)    Procenta z grafu
Řešení
a)   V grafu je znázorněno 50 %.
b)   V grafu je znázorněno 25 %.
c)   V grafu je znázorněno 75 %.
Matematická úloha – Procenta z grafu

225. Místa v divadle

Patrik, Pavel, Alena a Renata šli do divadla.

Vypočtěte, kolika různými způsoby se mohou rozesadit na čtyři sedadla pokud Renata chce sedět vedle Pavla?
Řešení
Můžou se rozesadit 12 způsoby.
Matematická úloha – Místa v divadle

226. V divadle

V divadle je 60 % dospělých a zbytek dětí. Z dospělých je žen a 18 mužů.

Vypočtěte, kolik dětí je v divadle.
Řešení
V divadle je 20 dětí.
Matematická úloha – V divadle

227. Zahradnické sázení

Zahradnice měly zasadit 200 sazenic. Lenka zasadila o 20 % více než Dana. Eva zasadila o 40 více než Dana. Zuzka zasadila toho co Dana.

Vypočtěte, kolik sazenic zasadila Dana.
Řešení
Dana zasadila 40 sazenic.
Matematická úloha – Zahradnické sázení

228. Sladkosti v cukrárně

V cukrárně mají 10 druhů zákusků, 8 druhů zmrzliny a 3 druhy kávy.

Vypočtěte, kolik možností je na výběr, chceme-li si dát:
a)   jeden z nabízených druhů zboží,
b)   jeden zákusek a jeden kopeček zmrzliny,
c)   jeden zákusek, jeden kopeček zmrzliny a jednu kávu,
d)   dva různé kopečky zmrzliny.
Řešení
a)   Je 21 možností.
b)   Je 80 možností.
c)   Je 240 možností.
d)   Je 56 možností.
Matematická úloha – Sladkosti v cukrárně

229. Šachový turnaj

Šachového turnaje se zúčastnilo 5 hráčů. Hrál každý s každým dvakrát.

Vypočtěte, kolik partií se odehrálo.
Řešení
Celkem bylo odehráno 10 partií.
Matematická úloha – Šachový turnaj

230. Část přímého úhlu

Vypočtěte, kolik procent přímého úhlu představuje úhel α o velikosti α = 72 °.
Řešení
Úhel α představuje 40 % přímého úhlu.
Matematická úloha – Část přímého úhlu

231. Část plného úhlu

Vypočtěte velikost úhlu, který je 45 % plného úhlu.
Řešení
Velikost úhlu je 162 °.
Matematická úloha – Část plného úhlu

232. Procenta části celku

Vypočtěte, kolik procent je čtvrtina dvou pětin celku.
Řešení
Čtvrtina dvou pětin celku je 10 %.
Matematická úloha – Procenta části celku

233. Pravidelný šestiúhelník

Je dán pravidelný šestiúhelník ABCDEF.

Určete velikost úhlu AFC.
Řešení
Velikost úhlu AFC = 60 °
Matematická úloha – Pravidelný šestiúhelník

234. Děti na houpačce

Na houpačce, kterou je páka se dvěma rameny, sedí dvě děti. Houpačka je v rovnováze. Na levé straně sedí 150 cm od středu dítě s hmotností 30 kg a na pravé dítě s hmotností 20 kg.

Vypočtěte, kolik centimetrů od středu sedí dítě na pravé straně.
Řešení
Dítě na pravé straně sedí 225 cm od středu houpačky.
Matematická úloha – Děti na houpačce

235. Výlet na kole

Olga jela na projížďku na kole. Za hodinu se za ní po stejné trase vypravil bratr na motorce stálou rychlostí 60 km/h a dojel ji za hodiny.

Určete:
a)   v km délku trasy, kterou Olga ujela, než ji bratr dojel,
b)   v kilometrech za hodinu, jakou průměrnou rychlostí Olga jela.
Řešení
a)   Olga ujela 30 km.
b)   Olga jela rychlostí 20 km/h.
Matematická úloha – Výlet na kole

236. Zlevnění a zdražení notebooku

Notebook před byl zdražen o 15 % a nyní ho doprodávají za 13 800 Kč, což je 80 % zdražené ceny.

Vypočtěte, jaká byla původní cena notebooku před zdražením.
Řešení
Cena notebooku před zdražením byla 15 000 Kč.
Matematická úloha – Zlevnění a zdražení notebooku

237. Tříciferná čísla

a)   Vypočtěte, kolik je tříciferných čísel, která mají ciferný součet 6?
b)   Určete v základním tvaru poměr počtu takto vytvořených sudých a lichých čísel.
Řešení
a)   Počet čísel je 21.
b)   Poměr sudých a lichých čísel je 4:3.
Matematická úloha – Tříciferná čísla

238. Procenta

U každé z následujících úloh vyberte z nabídky správné řešení:
a)   Šaty byly zdraženy z 800 Kč na 1 000 Kč. O kolik procent byly šaty zdraženy?
b)   Šaty byly zlevněny z 1 500 Kč na 450 Kč. Kolik procent tvoří nová cena z původní ceny šatů?
c)   Šaty byly zdraženy o dvě pětiny své hodnoty. O kolik procent byly zdraženy?
Řešení
a)   20 %
b)   25 %?1
c)   30 %?2
d)   33 %
e)   40 %?3
f)   60 %
Matematická úloha – Procenta

239. Úhlopříčka obrazovky

Úhlopříčka televizní obrazovky je 84 cm a výška je 40 cm.

Vypočtěte šířku obrazovky, zaokrouhlete na dvě desetinná místa.
Řešení
a = 71,58 cm
Matematická úloha – Úhlopříčka obrazovky

240. Dvě části cesty

Cesta má dvě části v celkové délce 190 metrů. Delší část cesty je o 10 metrů kratší než trojnásobek délky kratší části cesty.

Rozhodněte o každém z následujících tvrzení, zda je pravdivé, či nikoli.
a)   Delší část cesty má délku 140 metrů.
b)   Délky obou částí cesty jsou v poměru 1 : 3.
c)   Delší část cesty je o 90 metrů delší než kratší část.
Řešení
a)   1
b)   0
c)   1
Matematická úloha – Dvě části cesty