Úlohy: 261–280 / 335

261. Účet v bance

Na účtu v bance bylo 6 600 Kč, za což byl na konci roku připsán úrok 330

Vypočtěte, kolik procent byla úroková míra.
Řešení
Úroková míra byla 5 %.
Matematická úloha – Účet v bance

262. Procenta z grafu

V grafu jsou tmavou barvou vyznačeny části celku.

Určete, kolik procent znázorňují.
a)    Procenta z grafu
b)    Procenta z grafu
c)    Procenta z grafu
Řešení
a)   V grafu je znázorněno 50 %.
b)   V grafu je znázorněno 25 %.
c)   V grafu je znázorněno 75 %.
Matematická úloha – Procenta z grafu

263. Místa v divadle

Patrik, Pavel, Alena a Renata šli do divadla.

Vypočtěte, kolika různými způsoby se mohou rozesadit na čtyři sedadla pokud Renata chce sedět vedle Pavla?
Řešení
Můžou se rozesadit 12 způsoby.
Matematická úloha – Místa v divadle

264. V divadle

V divadle je 60 % dospělých a zbytek dětí. Z dospělých je žen a 18 mužů.

Vypočtěte, kolik dětí je v divadle.
Řešení
V divadle je 20 dětí.
Matematická úloha – V divadle

265. Zahradnické sázení

Zahradnice měly zasadit 200 sazenic. Lenka zasadila o 20 % více než Dana. Eva zasadila o 40 více než Dana. Zuzka zasadila toho co Dana.

Vypočtěte, kolik sazenic zasadila Dana.
Řešení
Dana zasadila 40 sazenic.
Matematická úloha – Zahradnické sázení

266. Sladkosti v cukrárně

V cukrárně mají 10 druhů zákusků, 8 druhů zmrzliny a 3 druhy kávy.

Vypočtěte, kolik možností je na výběr, chceme-li si dát:
a)   jeden z nabízených druhů zboží,
b)   jeden zákusek a jeden kopeček zmrzliny,
c)   jeden zákusek, jeden kopeček zmrzliny a jednu kávu,
d)   dva různé kopečky zmrzliny.
Řešení
a)   Je 21 možností.
b)   Je 80 možností.
c)   Je 240 možností.
d)   Je 56 možností.
Matematická úloha – Sladkosti v cukrárně

267. Šachový turnaj

Šachového turnaje se zúčastnilo 5 hráčů. Hrál každý s každým dvakrát.

Vypočtěte, kolik partií se odehrálo.
Řešení
Celkem bylo odehráno 10 partií.
Matematická úloha – Šachový turnaj

268. Část přímého úhlu

Vypočtěte, kolik procent přímého úhlu představuje úhel α o velikosti α = 72 °.
Řešení
Úhel α představuje 40 % přímého úhlu.
Matematická úloha – Část přímého úhlu

269. Část plného úhlu

Vypočtěte velikost úhlu, který je 45 % plného úhlu.
Řešení
Velikost úhlu je 162 °.
Matematická úloha – Část plného úhlu

270. Procenta části celku

Vypočtěte, kolik procent je čtvrtina dvou pětin celku.
Řešení
Čtvrtina dvou pětin celku je 10 %.
Matematická úloha – Procenta části celku

271. Pravidelný šestiúhelník

Je dán pravidelný šestiúhelník ABCDEF.

Určete velikost úhlu AFC.
Řešení
Velikost úhlu AFC = 60 °
Matematická úloha – Pravidelný šestiúhelník

272. Děti na houpačce

Na houpačce, kterou je páka se dvěma rameny, sedí dvě děti. Houpačka je v rovnováze. Na levé straně sedí 150 cm od středu dítě s hmotností 30 kg a na pravé dítě s hmotností 20 kg.

Vypočtěte, kolik centimetrů od středu sedí dítě na pravé straně.
Řešení
Dítě na pravé straně sedí 225 cm od středu houpačky.
Matematická úloha – Děti na houpačce

273. Výlet na kole

Olga jela na projížďku na kole. Za hodinu se za ní po stejné trase vypravil bratr na motorce stálou rychlostí 60 km/h a dojel ji za hodiny.

Určete:
a)   v km délku trasy, kterou Olga ujela, než ji bratr dojel,
b)   v kilometrech za hodinu, jakou průměrnou rychlostí Olga jela.
Řešení
a)   Olga ujela 30 km.
b)   Olga jela rychlostí 20 km/h.
Matematická úloha – Výlet na kole

274. Zlevnění a zdražení notebooku

Notebook před byl zdražen o 15 % a nyní ho doprodávají za 13 800 Kč, což je 80 % zdražené ceny.

Vypočtěte, jaká byla původní cena notebooku před zdražením.
Řešení
Cena notebooku před zdražením byla 15 000 Kč.
Matematická úloha – Zlevnění a zdražení notebooku

275. Tříciferná čísla

a)   Vypočtěte, kolik je tříciferných čísel, která mají ciferný součet 6?
b)   Určete v základním tvaru poměr počtu takto vytvořených sudých a lichých čísel.
Řešení
a)   Počet čísel je 21.
b)   Poměr sudých a lichých čísel je 4:3.
Matematická úloha – Tříciferná čísla

276. Procenta

U každé z následujících úloh vyberte z nabídky správné řešení:
a)   Šaty byly zdraženy z 800 Kč na 1 000 Kč. O kolik procent byly šaty zdraženy?
b)   Šaty byly zlevněny z 1 500 Kč na 450 Kč. Kolik procent tvoří nová cena z původní ceny šatů?
c)   Šaty byly zdraženy o dvě pětiny své hodnoty. O kolik procent byly zdraženy?
Řešení
a)   20 %
b)   25 %?1
c)   30 %?2
d)   33 %
e)   40 %?3
f)   60 %
Matematická úloha – Procenta

277. Úhlopříčka obrazovky

Úhlopříčka televizní obrazovky je 84 cm a výška je 40 cm.

Vypočtěte šířku obrazovky, zaokrouhlete na dvě desetinná místa.
Řešení
a = 71,58 cm
Matematická úloha – Úhlopříčka obrazovky

278. Dvě části cesty

Cesta má dvě části v celkové délce 190 metrů. Delší část cesty je o 10 metrů kratší než trojnásobek délky kratší části cesty.

Rozhodněte o každém z následujících tvrzení, zda je pravdivé, či nikoli.
a)   Delší část cesty má délku 140 metrů.
b)   Délky obou částí cesty jsou v poměru 1 : 3.
c)   Delší část cesty je o 90 metrů delší než kratší část.
Řešení
a)   1
b)   0
c)   1
Matematická úloha – Dvě části cesty

279. Setkání kamarádů

Kamarádi Petr a Martin bydlí ve vzdálenosti 13 kilometrů od sebe. Petr jel za Martinem na kole průměrnou rychlostí 18 km/hod. a Martin mu ve stejném okamžiku vyjel naproti na koloběžce. Za půl hodiny po vyjetí se setkali.

Vypočtěte:
a)   v kilometrech za hodinu, jakou průměrnou rychlosti jel Martin na koloběžce,
b)   v kilometrech, jakou vzdálenost ujel Martin, než se setkal s Petrem.
Řešení
a)   Martin jel rychlostí 8 km/hod.
b)   Martin ujel 4 km.
Matematická úloha – Setkání kamarádů

280. Města a obce na mapě

Měřítko mapy je 1:100 000. Vzdušná vzdálenost mezi dvěma městy měří na mapě 25 cm. Vzdálenost dvou obcí ve skutečnosti je 8 km.

Vypočtěte:
a)   jaká je vzdálenost mezi městy ve skutečnosti,
b)   jaká je vzdálenost mezi obcemi na mapě.
Řešení
a)   Města jsou vzdálena 25 km.
b)   Vzdálenost mezi obcemi na mapě je 8 cm.
Matematická úloha – Města a obce na mapě