Úlohy: 81–100 / 108

81. Zahradnické sázení

Zahradnice měly zasadit 200 sazenic. Lenka zasadila o 20 % více než Dana. Eva zasadila o 40 více než Dana. Zuzka zasadila toho co Dana.

Vypočtěte, kolik sazenic zasadila Dana.
Řešení
Dana zasadila 40 sazenic.
Matematická úloha – Zahradnické sázení

82. Odra

Délka Odry na území Česka je 42 % její délky v Polsku. Celková délka toku od pramene do moře je 1 165 km.

Vypočtěte a zaokrouhlete na celé kilometry, jaká je délka Odry na území Polska.
Řešení
Délka Odry na území Polska je 820 km.
Matematická úloha – Odra

83. Zlevněná televize

Televize stála 11 500 Kč a byla zlevněna o 10 %.

Vypočtěte, jaká je její nová cena.
Řešení
Nová cena televize je 10 350 Kč.
Matematická úloha – Zlevněná televize

84. Havarijní pojištění

Havarijní pojištění auta pana Jonáka stálo 14 050 Kč ročně. Pan Jonák díky provozu bez nehody získal již 40 % bonus (slevu).

Vypočtěte, kolik pan Jonák zaplatí ročně zaplatí za pojištění auta.
Řešení
Pan Jonák zaplatí 8 430 Kč.
Matematická úloha – Havarijní pojištění

85. Část přímého úhlu

Vypočtěte, kolik procent přímého úhlu představuje úhel α o velikosti α = 72 °.
Řešení
Úhel α představuje 40 % přímého úhlu.
Matematická úloha – Část přímého úhlu

86. Část plného úhlu

Vypočtěte velikost úhlu, který je 45 % plného úhlu.
Řešení
Velikost úhlu je 162 °.
Matematická úloha – Část plného úhlu

87. Procenta části celku

Vypočtěte, kolik procent je čtvrtina dvou pětin celku.
Řešení
Čtvrtina dvou pětin celku je 10 %.
Matematická úloha – Procenta části celku

88. Zvětšení lupy

Zvětšení lupy je 4násobné.

Vypočtěte, o kolik procent zvětšuje lupa.
Řešení
Lupa zvětšuje o 300 %.
Matematická úloha – Zvětšení lupy

89. Zlevnění a zdražení notebooku

Notebook před byl zdražen o 15 % a nyní ho doprodávají za 13 800 Kč, což je 80 % zdražené ceny.

Vypočtěte, jaká byla původní cena notebooku před zdražením.
Řešení
Cena notebooku před zdražením byla 15 000 Kč.
Matematická úloha – Zlevnění a zdražení notebooku

90. Kuželovitá střecha

Střecha věže má tvar pláště rotačního kužele o průměru podstavy 4,30 m. Odchylka strany od roviny podstavy je 36 °.

Vypočtěte v m2 spotřebu plechu na pokrytí střechy, počítáme-li 8 % na odpad. (Výsledek zapište na dvě desetinná místa.)
Řešení
Spotřeba plechu je 19,40 m2
Matematická úloha – Kuželovitá střecha

91. Tříciferná čísla

a)   Vypočtěte, kolik je tříciferných čísel, která mají ciferný součet 6?
b)   Určete v základním tvaru poměr počtu takto vytvořených sudých a lichých čísel.
Řešení
a)   Počet čísel je 21.
b)   Poměr sudých a lichých čísel je 4:3.
Matematická úloha – Tříciferná čísla

92. Procenta

U každé z následujících úloh vyberte z nabídky správné řešení:
a)   Šaty byly zdraženy z 800 Kč na 1 000 Kč. O kolik procent byly šaty zdraženy?
b)   Šaty byly zlevněny z 1 500 Kč na 450 Kč. Kolik procent tvoří nová cena z původní ceny šatů?
c)   Šaty byly zdraženy o dvě pětiny své hodnoty. O kolik procent byly zdraženy?
Řešení
a)   20 %
b)   25 %?1
c)   30 %?2
d)   33 %
e)   40 %?3
f)   60 %
Matematická úloha – Procenta

93. Spropitné

V gastronomickém zařízení se vždy na konci dne provádí inventura v pokladně, aby si mohli zaměstnanci rozdělit spropitné. Zjistilo se, že denní spropitné se řídí normálním rozdělením se střední hodnotou 2 600 korun a směrodatnou odchylkou 1 200 korun.

Vypočtěte, jaká je pravděpodobnost, že v náhodně vybraný den bude spropitné více než 3 200 korun.
Řešení
p = 30,85 %
Matematická úloha – Spropitné

94. Povinné minimální rezervy

Vypočtěte jaké minimální množství peněz musí banka držet v hotovosti z vkladu 5 500 €, jestliže úroveň povinných minimálních rezerv je 2,15 %. (Výsledek zapište na dvě desetinná místa.)
Řešení
Povinné minimální rezervy činí 118,25 €.
Matematická úloha – Povinné minimální rezervy

95. Kocourkov

V kocourkovském hradním muzeu byl nalezen větší počet středověkých kanónů vyrobených z děloviny (dělovina je slitina cínu a mědi v poměru 1:9). Kocourkovští radní se dohodli, že kanóny nepotřebují, ale hodil by se jim nový zvon do kocourkovské věže. Zvony se vyrábějí ze zvonoviny, která je také slitinou cínu a mědi, ale v poměru 1:4.

a)   Vypočítejte na dvě desetinná místa, kolik děloviny bude třeba na výrobu 500 kg vážícího zvonu ze zvonoviny.
b)   Vypočítejte na dvě desetinná místa, kolik cínu bude třeba na výrobu 500 kg vážícího zvonu ze zvonoviny.
Řešení
a)   Bude třeba 444,44 kg děloviny.
b)   Bude třeba 55,56 kg cínu.
Matematická úloha – Kocourkov

96. Vlastnosti čísla

Určete číslo, které je dělitelné šesti a sedmi a zároveň je větší než 79 a menší než 91
Řešení
Je to číslo 84.
Matematická úloha – Vlastnosti čísla

97. Zisk podnikatele

Zboží, podnikatel prodává za 700 Kč, nakoupil ve velkoskladu za 500 Kč.

Vypočtěte, kolik procent je zisk podnikatele.
Řešení
Zisk podnikatele je 40 %.
Matematická úloha – Zisk podnikatele

98. Výroba součástek

Denní normovaný výkon pracovníka předpokládá vyrobení 530 součástek stejného druhu. Skutečný výkon pracovníka byl 702 součástek.

Vypočtěte, na kolik procent pracovník splnil plán.
Řešení
Pracovník splnil plán na 135 %.
Matematická úloha – Výroba součástek

99. Lindiny úspory

Linda utratila za nákup dárků 320 Kč, což bylo 16 % jejích úspor.

Vypočtěte, kolik Kč Lindě zbylo.
Řešení
Lindě zbylo 1 680 Kč.
Matematická úloha – Lindiny úspory

100. Nádrž auta

V nádrži automobilu je 9,40 litru benzinu, což představuje 20 % objemu nádrže.

Vypočtěte, jaký je objem nádrže automobilu.
Řešení
Objem nádrže automobilu je 47 litrů.
Matematická úloha – Nádrž auta