Úlohy: 141–160 / 179

141. Řeka viditelná z rozhledny

Z rozhledny, která je 15 m vysoká a od řeky vzdálená 30 m, vidíme řeku pod úhlem úhlu 15 °.

Vypočtěte šířku řeky v metrech a zapište na jedno desetinné místo.
Řešení
Řeka je široká 43,30 metrů.

142. Oprava střechy věže

Střecha věže má tvar pravidelného čtyřbokého jehlanu a výškou 4 m a hranou podstavy 6 m. Zjistilo se, že je poškozeno 25 % krytiny na střeše.

Vypočtěte, kolik metrů čtverečních krytiny je potřeba k opravě střechy.
Řešení
K opravě je třeba 15 m2 krytiny.

143. Řazení vagónů

Vypočítejte, kolika způsoby můžeme seřadit 5 vagonů, když ve třech vagonech je písek a ve dvou je cement.
Řešení
Vagóny můžeme seřadit 10 způsoby.

144. Zvětšení kruhu

Kruh 1 má poloměr a. Kruh 2 má poloměr dvakrát větší.

a)   Vypočtěte, kolikrát větší průměr má kruh 2 než kruh 1.
b)   Vypočtěte, kolikrát větší obvod má kruh 2 než kruh 1.
c)   Vypočtěte, kolikrát větší obsah má kruh 2 než kruh 1.
Řešení
a)   Kruh 2 má 2krát větší průměr než kruh 1.
b)   Kruh 2 má 2krát větší obvod než kruh 1.
c)   Kruh 2 má 4krát větší obsah než kruh 1.

145. Student u zkoušky

Při zkoušce si student náhodně vylosuje tři otázky ze 30 možných. K úspěšnému složení zkoušky musí všechny tři otázky správně zodpovědět. Student umí 70 % otázek.

Vypočtěte, jaká je pravděpodobnost, že student u zkoušky uspěje.
Řešení
Pravděpodobnost je 32,76 %.

146. První stupeň školy

Ve škole je na 1. stupni p prvňáků. Druháků je o 18 % méně než prvňáků. Třeťáků je o 7 více než druháků a čtvrťáků je dvakrát více než prvňáků a druháků dohromady.

Vyjádřete výrazem počet žáků na 1. stupni a výraz zjednodušte.
Řešení
Na prvním stupni je 6.28p+7 žáků.

147. Objem jehlanu

Je dán pravidelný čtyřbokého jehlanu. Výška jehlanu je 30 cm a stěnová výška je 50 cm.

Vypočtěte v dm3 objem jehlanu.
Řešení
Objem jehlanu je 64 dm3.

148. Výrobní linky

V továrně se vyrábí 35 % výrobků na výrobní lince A, která vyrábí zmetky s pravděpodobností a 65 % výrobků na výrobní lince B, kde je pravděpodobnost zmetků .

Vypočtěte, jaká je pravděpodobnost, že náhodně vybraný výrobek bude vadný?
Řešení
Pravděpodobnost zmetku je 2,65 %.

149. Místa v divadle

Patrik, Pavel, Alena a Renata šli do divadla.

Vypočtěte, kolika různými způsoby se mohou rozesadit na čtyři sedadla pokud Renata chce sedět vedle Pavla?
Řešení
Můžou se rozesadit 12 způsoby.

150. Kinetická energie auta

Auto o hmotnosti 1 850 kg zvětšilo svoji rychlost z 27 na 81 km/h.

Vypočtěte, o joulů se zvětšila jeho kinetická energie?
Řešení
Kinetická energie se zvětšila o 208 125 joulů.

151. Tříčlenná družstva

Ze čtyř dívek a čtyř chlapců má být vytvořeno jedno tříčlenné družstvo, ve kterém bude jedna dívka a dva chlapci.

Vypočtěte, kolika různými možnostmi lze družstvo vytvořit.
Řešení
Družstvo lze vytvořit 24 způsoby.

152. Stavba zdi

Zedník s učedníkem by společně postavili zeď za 15 hodin. Učedník sám by zeď postavil za 60 hodin.

a)   Vypočtěte, kolik hodin by zeď stavěl sám zedník.
b)   Vypočtěte, o kolik procent se zkrátí doba stavby zdi při zapojení učedníka oproti době práce samotného zedníka.
Řešení
a)   Zedník sám by stavěl zeď 20 hodin.
b)   Doba se zkrátí o 25 %.

153. Kružnice určené body

V rovině je 10 různých bodů.

Vypočtěte, kolik nejvíce kružnic je těmito body určeno.
Řešení
Těmito body je určeno 120 kružnic.

154. Vyřešte rovnici

Vyřešte v R rovnice
a)   
b)   
c)   
d)   
Řešení
a)   x = 0
b)   x = –2
c)   x = –2
d)   nemá řešení

155. Kuželovitá střecha

Střecha věže má tvar pláště rotačního kužele o průměru podstavy 4,3 m. Odchylka strany od roviny podstavy je 36 °.

Vypočtěte v m2 spotřebu plechu na pokrytí střechy, počítáme-li 8 % na odpad. (Výsledek zapište na dvě desetinná místa.)
Řešení
Spotřeba plechu je 19,39 m2

156. Těžiště trojúhelníku

Přímka p prochází těžištěm T trojúhelníku a je rovnoběžná s úsečkou BC.

Vypočtěte poměr obsahu rozdělené menší části trojúhelníku přímkou ​​p a obsahu trojúhelníku.
Řešení
Poměr je 4:9.

157. Řešte rovnici

Řešte v R rovnici
a)   
b)   
c)   
d)   
Řešení
a)   x = 7
b)   x = 2
c)   x = 7
d)   x = 6

158. Vyřešte v R rovnici

Vyřešte v R rovnice
a)   
b)   
c)   
d)   
Řešení
a)   x = 2
b)   x = 7
c)   x = 6
d)   x = -3

159. Rovnice v podílovém tvaru

Řešte v R rovnice
a)   
b)   
c)   
d)   
Řešení
a)   x = 2
b)   x = 1
c)   x = -3
d)   x = -1

160. Pastelky

V penálu je 5 pastelek: modrá, žlutá, zelená, červená a fialová.

a)   Vypočtěte, kolik je různých možností uložení v penálu.
b)   Vypočtěte, kolik je různých možností uložení v penálu za předpokladu, že modrá a žlutá musí být (v tomto pořadí) vždy vedle sebe.
Řešení
a)   Je 120 možností.
b)   Je 24 možností.