Úlohy: 21–40 / 165

21. Obsah obdélníku

Obsah obdélníku je 81,25 cm2. Zvětšíme-li jeho délku o 5 mm, zvětší se jeho obsah o 4 %.

Určete v milimetrech rozměry obdélníku.
Řešení
Šířka obdélníku je 125 mm, délka obdélníku je 65 mm.

22. Evženova brigáda

Evžen dostal plat za brigádu. Za polovinu vydělané částky jsem si koupil kopačky a za polovinu zbytku fotbalový míč. Poté mu zbylo 1200 Kč.

Vypočítejte, kolik peněz si Evžen vydělal na brigádě.
Řešení
Evžen si na brigádě vydělal 4 800

23. Trojciferné číslo

Tříciferné číslo má ciferný součet 16. Pokud v tomto čísle zaměníme číslice na místech stovek a desítek, číslo se o 360 zmenší. Pokud v původním čísle zaměníme čísla na místech desítek a jednotek, číslo se o 54 zvětší.

Určete toto trojciferné číslo.
Řešení
Jde o číslo 644.

24. Věk otce a syna

V roce 2005 byl otec třikrát tak starý než jeho syn. V roce 2020 byl syn o polovinu svého věku mladší než otec.

Vypočítejte, ve kterém roce se narodil otec a ve kterém syn.
Řešení
Otec se narodil v roce 1 960, jeho syn se narodil v roce 1 990.

25. Opsaná a vepsaná koule

Krychli o objemu 4 096 cm3 je opsána a vepsána koule.

Vypočítejte, kolikrát je větší objem opsané koule než koule vepsané. (Zaokrouhlete na dvě desetinná místa.)
Řešení
Objem opsané koule je 5,20krát větší než objem koule vepsané.

26. Věk dívek

Kamila je 2× starší než Helena. Před 4 roky byla Kamila 6× starší, než tehdy byla Helena.

Vypočítejte, za kolik let bude věk Kamily a Heleny v poměru 4:3.
Řešení
Věk Kamily a Heleny bude v poměru 4:3 za 10 let.

27. Žáci ve třídě

Ve třídě je 30 žáků. Věk každého počítáme na celé roky. Průměrný věk dívek je 12,25 a hochů 12,5 a průměrný věk všech je 12,3.

Vypočítejte, kolik je ve třídě dívek a kolik hochů.
Řešení
Ve třídě je 24 dívek a 6 chlapců.

28. Dohánění pelotonu

Čelo cyklistického pelotonu jede průměrnou rychlostí 48 km/h. Cyklista se zeleným tričkem ztratil při pádu 5 minut. Chce dosáhnout čelo pelotonu za dvacet minut.

Vypočítejte rychlost, jakou musí cyklista v zeleném tričku jet.
Řešení
Cyklista v zeleném tričku musí jet rychlostí 60 km/h.

29. Volba jazyků

V ročníku je 88 studentů a ti mají možnost si zvolit výuku dvou jazyků – angličtinu a němčinu. Na angličtinu nechodilo 66 studentů, což je o 3 více než počet studentů, kteří se nepřihlásili na němčinu. Na oba jazyky se přihlásilo 9 studentů.

Vypočítejte:
a)   kolik studentů se přihlásilo alespoň na jeden jazyk,
b)   kolik studentů se přihlásilo právě na jeden jazyk.
Řešení
a)   Alespoň na jeden jazyk se přihlásilo 38 studentů.
b)   Právě na jeden jazyk se přihlásilo 29 studentů.

30. Úhly v rovnoběžníku

Je dán rovnoběžník ABCD, délka jeho jedné úhlopříčky je rovna délce jeho jedné strany.

Vypočítejte, jakou velikost mají vnitřní úhly rovnoběžníku ABCD.
Řešení
Vnitřní úhly rovnoběžníku ABCD mají velikost 60 ° a 120 °.

31. Dvě myšlená čísla

Kamila si myslela dvě přirozená čísla. Tato čísla nejprve správně sečetla, poté správně odečetla. V obou případech dostala dvouciferný výsledek. Součin takto vzniklých dvouciferných čísel byl 645.

Vypočítejte, jaká čísla si Kamila myslela.
Řešení
Kamila si myslela čísla 14 a 29.

32. Martinovo číslo

Michal si myslel číslo. Po odečtení jeho dvou třetin a přičtení čísla 8 získal číslo 40

Vypočítejte, jaké je původní číslo, které si Michal myslel.
Řešení
Michal si myslel číslo 96.

33. Víkendy v divadle

Druhý víkend přišlo do divadla o 20 % diváků více než první. Za oba dva víkendy byl počet diváků 27 500.

Vypočítejte, kolik diváků přišlo do divadla druhý víkend.
Řešení
Druhý víkend přišlo do divadla 15 000 diváků.

34. Potřásání rukou

Po skončení schůzky si všichni přítomní potřásli každý s každým rukou – celkem 105krát.

Vypočítejte, kolik lidí bylo na schůzce.
Řešení
Na schůzce bylo 21 lidí.

35. Pravidelný čtyřboký jehlan

Objem pravidelného čtyřbokého jehlanu je 288 dm³. Obvod jeho podstavy je stejně velký jako jeho výška.

Vypočítejte povrch jehlanu. (Výsledek zaokrouhlete na celé dm².)
Řešení
Povrch jehlanu je 326 dm².

36. Neznámý zlomek

Je dán zlomek, jehož jmenovatel je o 2 větší než jeho čitatel. Když čitatele i jmenovatele tohoto zlomku zvětšíme o 7, obdržíme zlomek .

Určete základní tvar hledaného zlomku.
Řešení
Čitatel hledaného zlomku je 3 a jmenovatel hledaného zlomku je 5.

37. Společný nákup

Milena a Ema zaplatily za společný nákup 2 460 Kč. Milena však zaplatila pětkrát více než Ema.

Vypočítejte, kolik Kč zaplatila za nákup Milena a kolik Ema.
Řešení
Milena zaplatila 2 050 Kč a Ema zaplatila 410 Kč.

38. Pokrývači

Mistr s učněm pokládají tašky na střechu. Na konci práce zjistili, že učeň udělal jen třetinu práce a zbytek mistr. Pokud by mistr pracoval sám, trvala by mu práce o 2 hodiny déle, než kdyby pracovali společně. Pokud by pracoval sám učeň, trvala by mu práce o 8 hodin déle, než kdyby pracovali společně.

Vypočítejte, za jak dlouho by práci provedl samotný mistr a za jak dlouho samotný učeň.
Řešení
Sám mistr by provedl práci za 6 hodin, sám učeň by provedl práci za 12 hodin.

39. Velikost obkladaček

Stěnu o rozměrech 4 m × 250 cm chceme obložit čtvercovým obkladem s co největšími rozměry stran obkladaček tak, aby nevznikly žádné ztráty způsobené například jejich řezáním při obkládání.

Vypočítejte, kolik kusů obkladaček budeme na celou stěnu potřebovat.
Řešení
Budeme potřebovat 40 kusů obkladaček.

40. Pozemek tvaru lichoběžníku

Pozemek tvaru pravoúhlého lichoběžníku má základny dlouhé 102 m a 86 m. Kolmé rameno má délku 63 m.

Vypočítejte
a)   obsah pozemku,
b)   obvod pozemku.
Řešení
a)   Obsah pozemku je 5 922 m2m
b)   obvod pozemku 316 metrů.