Úlohy: 41–60 / 150

41. Velikost procent

Určete, jestli může být 1 % větší než 2 %.
Řešení
Ano může, platí pro záporná čísla.

42. Cyklistický závod

Cyklisté při závodě ujeli z celkové délky a do cíle jim zbývá 72 km.

Určete:
a)   jak dlouhý byl závod,
b)   kolik procent závodu budou mít cyklisté za sebou po ujetí 94,50 kilometrů.
Řešení
a)   Závod byl dlouhý 126 kilometrů.
b)   Cyklisté budou mít za sebou 75 procent závodu.
c)   

43. Z9-I-1 2022

Bolek a Lolek měli každý svou aritmetickou posloupnost. Jak Lolkova, tak Bolkova posloupnost začínala číslem 2 023 a končila číslem 3 023 Tyto dvě posloupnosti měly 26 společných čísel. Poměr Bolkovy a Lolkovy diference byl 5:2.

Vypočítejte, jaký byl rozdíl Bolkovy a Lolkovy diference.
Řešení
Rozdíl Bolkovy a Lolkovy diference je 12.

44. Absolutní hodnota

Vypočítejte
a)   
b)   
c)   
d)   
Řešení
a)   2
b)   
c)   5
d)   -7

45. Lektvar věčného mládí

Čarodějnice připravuje lektvar věčného mládí. V receptu se dočetla, že objem lektvaru je tvořen ze dvou devítin z tekutého jedu ropuchy, z šesti patnáctin z nektaru mandragory a zbytek tvoří 34 mililitrů vody.

Vypočtěte, kolik mililitrů lektvaru čarodějnice podle tohoto receptu vyrobí.
Řešení
Čarodějnice připraví 90 ml lektvaru věčného mládí.

46. Dělitelnost

Je dáno číslo 123 456 789

a)   Určete jednu číslici, kterou je třeba vynechat, aby vzniklo co největší číslo dělitelné třemi.
b)   Určete jednu číslici, kterou je třeba vynechat, aby vzniklo co největší číslo dělitelné devíti.
Řešení
a)   Je třeba vynechat číslici 3.
b)   Je třeba vynechat číslici 9.

47. Čtyřciferná čísla

Najděte:
a)   nejmenší čtyřciferné číslo dělitelné šesti,
b)   největší čtyřciferné číslo dělitelné šesti.
Řešení
a)   Nejmenší čtyřciferné číslo dělitelné šesti je 1 002.
b)   Největší čtyřciferné číslo dělitelné šesti 9 996.

48. Cyklistický výlet

Emil chce jet na 4 dny na cyklistický výlet. Celkem má v plánu ujet 120 km. První den plánuje ujet čtvrtinu celé trasy. Druhý den , třetí den chce ujet celé trasy výletu.

Vypočítejte:
a)   kolik kilometrů Emil ujede za první 3 dny,
b)   kolik kilometrů Emilovi zbyde na poslední den.
Řešení
a)   Za první tři dny Emil ujede 88 km.
b)   Na poslední den Emilovi zbyde 32 km.

49. Aritmetická posloupnost

V aritmetické posloupnosti je dáno a1=4, Sn=589, d=3.

Vypočtěte, kolik členů má aritmetická posloupnost.
Řešení
Aritmetická posloupnost má 19 členů.

50. Počet koláčků

Jana měla 15 koláčků. Karel jí snědl 9 koláčků.

Vypočítejte, kolik koláčků Janě zbylo.
Řešení
Janě zbylo 6 koláčků.

51. Maso během diety

Paní Tučná chce zhubnout v lednici má maso o hmotnosti kilogramu. Paní Tučná má však povoleno sníst v rámci diety pouze kilogramu masa.

Vypočítejte, jakou část masa může paní Tučná sníst, aby dodržela svoji dietu.
Řešení
Paní Tučná může sníst 3/4 masa.

52. Červené a bílé kuličky

Máme 15 červených a 5 bílých kuliček.

Vypočítejte v procentech, jaká je pravděpodobnost, že první vytažená kulička bude bílá.
Řešení
Pravděpodobnost, že první vytažená kulička bude bílá, je 25 %.

53. Obvod trojúhelníku ABC

Je dán trojúhelník ABC. Délka strany a je rovna dvou třetinám strany c. Délka strany c je rovna třem pětinám délky strany b. Délka strany b je 15 cm.

Vypočítejte obvod trojúhelníku ABC.
Řešení
Obvod trojúhelníku ABC je 50 cm.

54. Symetrické číslo

Je dáno číslo 346

Doplňte k danému číslu zepředu a zezadu co nejmenší počet cifer tak, aby vzniklo symetrické číslo dělitelné 5
Řešení
Vzniklé číslo je 5 643 465.

55. Nehodící se číslo

Jsou dána čísla 22, 368, 400, 602, 699, 978, 12 334.

Určete, které z těchto čísel nepatří mezi ostatní.
Řešení
Mezi ostatní nepatří číslo 699.

56. Nehodící se číslo

Jsou dána čísla 9, 21, 31, 51, 57, 77, 93.

Určete, které z těchto čísel nepatří mezi ostatní.
Řešení
Mezi ostatní nepatří číslo 31.

57. Pizza v krabicích

Na stole jsou dvě krabice pizzy stejné velikosti. V jedné krabici je pizzy a ve druhé pizzy. Potom kuchař rozdělí obě pizzy na dílky tak, že jeden dílek je pizzy.

Určete, kolik kousků pizzy bylo v krabicích.
Řešení
V krabicích bylo 10 kousků pizzy.

58. Pěticiferná čísla

Jsou dané cifry 0, 1, 3, 4, 7.

Určete počet všech přirozených pěticiferných čísel, v nichž je každá z číslic alespoň jednou obsažena.
Řešení
Jde o 2 500 čísel.

59. Doplnění poměru

Doplň místo x takové číslo, aby platila rovnost.
a)   \( \frac{5}{6} = \frac{15}{x} \)
b)   \( \frac{3}{2} + 1 = \frac{x}{10} \)
Řešení
a)   18
b)   25

60. Hodiny na brigádě

Brigádník má na stavbě odpracovat 50 hodin. Zatím pracoval 9 dní po třech hodinách a 3 dny po dvou hodinách.

Vypočítejte, kolik hodin ještě musí brigádník odpracovat.
Řešení
Brigádník ještě musí odpracovat 17 hodin.