Úlohy: 81–100 / 235

81. Obsah obdélníku

Obsah obdélníku je 81,25 cm2. Zvětšíme-li jeho délku o 5 mm, zvětší se jeho obsah o 4 %.

Určete v milimetrech rozměry obdélníku.
Řešení
Šířka obdélníku je 125 mm, délka obdélníku je 65 mm.

82. Sýkorky na stromech

Na tři stromy přiletělo 36 sýkorek. Když z prvního stromu přeletělo na druhý

strom 6 sýkorek a z druhého stromu na třetí 4 sýkorky, bylo na všech stromech

stejně sýkorek.

Vypočítejte, kolik sýkorek sedělo původně na každém stromě.
Řešení
Na prvním stromě bylo 18 sýkorek, a druhém stromě bylo 10 sýkorek a na třetím stromě bylo 8 sýkorek

83. Trojciferné číslo

Tříciferné číslo má ciferný součet 16. Pokud v tomto čísle zaměníme číslice na místech stovek a desítek, číslo se o 360 zmenší. Pokud v původním čísle zaměníme čísla na místech desítek a jednotek, číslo se o 54 zvětší.

Určete toto trojciferné číslo.
Řešení
Jde o číslo 644.

84. Test z matematiky

V kontrolním testu z matematiky je 25 otázek, za každou správnou odpověď se přičte 5 bodů, za každou chybějící nebo chybně zodpovězenou otázku se odečtou 3 body. Jakub dosáhl v tomto testu 69 bodů, přičemž na dvě otázky neodpověděl.

Vypočítejte, kolik chyb Jakub v testu udělal.
Řešení
Jakub udělal 7 chyb.

85. Věk otce a syna

Otec je 3× starší než syn. Za 8 let bude otec o 28 let starší než syn.

Vypočítejte, kolik let je otci a kolik synovi.
Řešení
Otci je 42 let a synovi je 14 let.

86. Věk otce a syna

V roce 2005 byl otec třikrát tak starý než jeho syn. V roce 2020 byl syn o polovinu svého věku mladší než otec.

Vypočítejte, ve kterém roce se narodil otec a ve kterém syn.
Řešení
Otec se narodil v roce 1 960, jeho syn se narodil v roce 1 990.

87. Firemní účty

Tři firmy měly na účtech v bance celkem 3 250 000 Kč. První firma měla o 18 % více peněž než druhá a třetí o 47 000 Kč méně než první.

Vypočítejte, kolik měla každá firma korun na bankovním účtu.
Řešení
První firma měla na bankovním účtu 1 157 875 Kč, druhá firma 981 250 Kč a třetí firma 1 110 875 Kč.

88. Grafy lineárních funkcí

Jsou dány grafy lineárních funkcí.

Určete zpaměti funkční předpis.
a)    Graf lineární funkce
b)    Graf lineární funkce
c)    Graf lineární funkce
d)    Graf lineární funkce
Řešení
a)   
b)   
c)   
d)   

89. Smáčené stěny bazénu

Bazén ve tvaru kvádru je 50 m dlouhý a 16 m široký. Napustili do něj 12 000 hl vody.

Vypočítejte obsah ploch bazénu, které jsou smáčeny vodou.
Řešení
Obsah ploch bazénu, které jsou smáčeny vodou, je 998 m2.

90. Věk dívek

Kamila je 2× starší než Helena. Před 4 roky byla Kamila 6× starší, než tehdy byla Helena.

Vypočítejte, za kolik let bude věk Kamily a Heleny v poměru 4:3.
Řešení
Věk Kamily a Heleny bude v poměru 4:3 za 10 let.

91. Žáci ve třídě

Ve třídě je 30 žáků. Věk každého počítáme na celé roky. Průměrný věk dívek je 12,25 a hochů 12,5 a průměrný věk všech je 12,3.

Vypočítejte, kolik je ve třídě dívek a kolik hochů.
Řešení
Ve třídě je 24 dívek a 6 chlapců.

92. Dohánění pelotonu

Čelo cyklistického pelotonu jede průměrnou rychlostí 48 km/h. Cyklista se zeleným tričkem ztratil při pádu 5 minut. Chce dosáhnout čelo pelotonu za dvacet minut.

Vypočítejte rychlost, jakou musí cyklista v zeleném tričku jet.
Řešení
Cyklista v zeleném tričku musí jet rychlostí 60 km/h.

93. Grafy lineárních funkcí

Jsou dány grafy lineárních funkcí.

Určete zpaměti funkční předpis.
a)    Graf lineární funkce
b)    Graf lineární funkce
c)    Graf lineární funkce
d)    Graf lineární funkce
Řešení
a)   
b)   
c)   
d)   

94. Kvadratické nerovnice

Řešte v R kvadratické nerovnice:
a)   
b)   
c)   
d)   
e)   
f)   
g)   
h)   
i)   
j)   
k)   
l)   
Řešení
a)   
b)   
c)   
d)   
e)   
f)   
g)   
h)   
i)   
j)   
k)   
l)   

95. Počet řešení kvadratické rovnice

Určete hodnotu m tak, aby kvadratická rovnice měla jedno řešení.
a)   
b)   
c)   
d)   
Řešení
a)   m = 4
b)   m1 = -3, m2 = 3
c)   m = 3
d)   m = 0,20

96. Cesta na zámek

Kamarádi Martin a Jitka se rozhodli, že navštíví zámek, který je od jejich domova vzdálen 10 km. Martin vyšel v 7 hodin a 30 minut a šel rychlostí 4 km/hod. Za hodinu a půl za ním vyjela Jitka na kole a jela rychlostí 16 km/hod.

a)   Vypočítejte, kolik kilometrů před zámkem
b)   a v kolik hodin dojela Jitka Martina.
Řešení
Jitka dohonila Martina 2 km před zámkem. Bylo to v 9 hodin a 30 minut.

97. Úhly v rovnoběžníku

Je dán rovnoběžník ABCD, délka jeho jedné úhlopříčky je rovna délce jeho jedné strany.

Vypočítejte, jakou velikost mají vnitřní úhly rovnoběžníku ABCD.
Řešení
Vnitřní úhly rovnoběžníku ABCD mají velikost 60 ° a 120 °.

98. Dvě myšlená čísla

Kamila si myslela dvě přirozená čísla. Tato čísla nejprve správně sečetla, poté správně odečetla. V obou případech dostala dvouciferný výsledek. Součin takto vzniklých dvouciferných čísel byl 645.

Vypočítejte, jaká čísla si Kamila myslela.
Řešení
Kamila si myslela čísla 14 a 29.

99. Evženovy mince

Evžen má mince 10 Kč, 20 Kč a 50 Kč, všech je stejný počet. Dohromady má 960 Kč.

Vypočítejte, kolik má Evžen mincí od každého druhu.
Řešení
Evžen má 12 mincí každé hodnoty.

100. Podobnost trojúhelníků

Trojúhelník ABC a trojúhelník ADE jsou podobné. Délka strany DE je 12 cm, délka strany BC je 16 cm a obsah trojúhelníku ADE je 27 cm2.

Vypočítejte v centimetrech čtverečních obsah trojúhelníku ABC.
Řešení
Obsah trojúhelníku ABC je 48 cm2.