Úlohy: 1–20 / 169

1. Vystřižené rovnoramenné trojúhelníky

Jsou dány dva shodné rovnoramenné trojúhelníky, z nichž každý má obvod 100 cm. Nejprve z těchto trojúhelníků složíme rovnoběžník tak, že je k sobě přiložíme rameny. Poté z nich složíme kosočtverec tak, že je k sobě přiložíme základnami. Rovnoběžník má o 4 cm kratší obvod než kosočtverec.

Vypočítejte délky stran trojúhelníků.
Řešení
Základna má délku 32 cm, rameno má délku 34 cm.

2. Turista na cestě

Turista šel cesty rychlostí 6 km/hod, cesty rychlostí 4 km/hod a zbývajících 7 km rychlostí 5 km/hod.

Vypočítejte:
a)   kolik kilometrů turista ušel,
b)   kolik minut mu trvala cesta.
Řešení
a)   Turista ušel 20 kilometrů.
b)   Cesta mu trvala 254 minut.

3. Plnící linky v mlékárně

V mlékárně mají dvě linky pro plnění krabic mléka. Nová linka je o 50 % rychlejší, než stará linka. Když pracují obě linky současně, naplní běžné denní množství krabic mléka o 6 hodin dříve, než když pracovala pouze stará linka.

Vypočítejte, za jak dlouho naplní denní množství krabic mléka, bude-li pracovat:
a)   pouze stará linka,
b)   pouze nová linka,
c)   obě linky současně.
Řešení
a)   Bude-li pracovat pouze stará linka, naplní denní množství krabic za 10 hodin a 0 minut.
b)   Bude-li pracovat pouze nová linka, naplní denní množství krabic za 6 hodin a 40 minut.
c)   Budou-li pracovat obě linky současně, naplní denní množství krabic za 4 hodin a 0 minut.

4. Vypočítejte rovnici

Vypočítejte rovnici a udělejte zkoušku.
Řešení
x = 4

5. Auto dohání autobus

V 16:30 vyjel autobus rychlostí 60 km/h, v 17:00 za ním vyjelo ze stejného místa auto rychlostí 80 km/h.

Vypočítejte:
a)   jak daleko od místa startu se setkaly,
b)   v kolik hodin se setkaly.
Řešení
a)   Setkaly se 120 kilometrů od místa startu.
b)   K setkání došlo v 18 hodin a 30 minut.

6. Objem a povrch dětského bazénu

Dětský bazén má tvar válce o průměru podstavy 4 m a hloubce 50 cm.

Vypočítejte:
a)   objem vody v litrech, který může být v bazénu, je-li naplněn po okraj (zaokrouhlete na celé litry),
b)   kolik litrů vody bude v bazénu, pokud bazén naplníme jen na do tří čtvrtin výšky (zaokrouhlete na celé litry),
c)   jak velkou plochu v m2 je třeba vymalovat, chceme-li vymalovat stěnu bazénu zevnitř beze dna (zaokrouhlete na dvě desetinná místa).
Řešení
a)   Objem vody v bazénu je 6 283 litrů.
b)   Pokud bude bazén naplněn do tří čtvrtin výšky, bude v něm 4 712 litrů vody.
c)   Je potřeba vymalovat 6,28 m2 plochy.

7. Rozdělený pravidelný čtyřboký jehlan

Je dán pravidelný čtyřboký jehlan s délkou podstavné hrany a = 15 cm a výškou v = 21 cm. Rovnoběžně s podstavou vedeme dvě roviny tak, že rozdělí výšku jehlanu na tři stejné části.

Vypočítejte poměr objemů vzniklých 3 těles od nejmenšího po největší.
Řešení
Poměr je 1:7:19.

8. Peníze Soni, Emy a Zuzany

Soňa a Ema mají dohromady 200 Kč, Ema a Zuzana mají dohromady 150 Kč, Soňa se Zuzanou mají dohromady 190 Kč.

Vypočítejte, kolik Kč má Soňa, kolik Ema a kolik Zuzana.
Řešení
Soňa má 120 Kč, Ema má 80 Kč a Zuzana má 70 Kč.

9. Kužel a válec

Rotační válec má objem 120 dm3. Rotační kužel má stejně velký objem i poloměr podstavy jako rotační válec.

Vypočítejte, o kolik procent je větší výška rotačního kužele než výška rotačního válce.
Řešení
Výška rotačního kužele je větší o 200 %.

10. Zvětšení stran obdélníku

Jedna strana obdélníku byla zvětšena o 20 % a druhá o 25 %.

Vypočítejte, o kolik procent se zvětšil obsah obdélníku.
Řešení
Obsah obdélníku se zvětšil o 50 %.

11. Auta na dálnici

Auta A a B jedou po dálnici v téže trase a ze stejného místa. Auto A jede rychlostí 60 km/h a auto B, které odstartovalo o 2 hodiny později, jede rychlostí 90 km/h.

Vypočítejte, jakou dobu a jakou vzdálenost musí auto B ujet, aby dojelo k autu A.
Řešení
Auto B musí jet 4 hodiny a ujet 360 km, aby dojelo auto A.

12. Nabídka rostlin

Určitý obchod nabízí 2 druhy rostlin, jedny stojí 50 Kč za kus a druhé 80 Kč za kus. Zákazník si koupil 30 rostlin a zaplatil celkem 1 770 Kč.

Vypočítejte, kolik rostlin každého druhu si zákazník koupil.
Řešení
Zákazník si koupil 21 rostlin za 50 Kč a 9 rostlin za 80 Kč.

13. Jakub a Filip na křižovatce

Jakub a Filip, každý na svém jízdním kole, stáli na křižovatce, kde se křížily kolmé ulice. Jakub se vydal jednou ulicí rychlostí 12 km/h, Filip druhou ulicí rychlostí 16 km/hod.

Vypočítejte, jak daleko od sebe byli za 15 minut od startu.
Řešení
Po 15 minutách od startu jsou Jakub a Filip od sebe vzdáleni 5 km.

14. Kužel vyříznutý z válce

Těleso vzniklo tak, že byl do válce o průměru 12 cm a výšce 20 cm vyříznut kužel o stejném průměru a stejné výšce.

Vypočítej objem takto vzniklého tělesa.
Řešení
Tedy objem takto vzniklého tělesa je 1 507,96 cm3.

15. Věk Lukáše a Anety

Věk Lukáše je o 4 roky větší než věk jeho sestry Anety. Před třemi lety byl Lukášův věk dvojnásobkem věku Anety v té době.

Vypočítejte aktuální věk obou sourozenců.
Řešení
Věk Anety je 7 let a věk Lukáše je 11 let.

16. Telefony na skladě

V obchodě byly na skladě nové telefony. První den se prodalo 25 % z celkového počtu. Druhý den se prodalo o 40 % více než první den, ale stále zůstalo na skladě ještě 72 kusů telefonů.

Vypočítejte, kolik telefonů bylo původně na skladě.
Řešení
Na skladě měli 180 telefonů.

17. Objem válce a kužele

Je dán válec s poloměrem základny 6 cm a výškou 10 cm. Na vrcholu tohoto válce je umístěn kužel se stejným poloměrem základny a polovinou výšky válce.

Vypočítejte objem tohoto složeného tělesa. (Výsledek zaokrouhlete na dvě desetinná místa.)
Řešení
Objem složeného tělesa je 1 319,47 cm3.

18. Tři lodě v přístavu

V přístavu jsou kotveny tři lodě: Loď A, loď B a loď C. Loď A má 2krát více nákladu než loď B a loď C má o 100 tun méně nákladu než loď A. Celková hmotnost nákladu všech tří lodí je 1600 tun.

Vypočítejte, kolik tun nákladu má každá loď.
Řešení
Loď A má 680 tun nákladu, loď B má 340 tun nákladu a loď C má 580 tun nákladu.

19. Podobné trojúhelníky

Jsou dány dva trojúhelníky ΔABC a ΔDEF. Je dáno: a = 24 cm, b = 18 cm, c = 36 cm, d = 12 cm, e = 24 cm, f = 16 cm.

Určete, jestli jsou trojúhelníky podobné. Pokud ano, určete koeficient podobnosti.
Řešení
Trojúhelníky jsou podobné. Koeficient podobnosti je .

20. Zapomenutý PIN

Tomáš zapomněl čtyřmístný PIN, pamatuje si první tři čísla. Ví, že čtvrté číslo je liché.

Vypočítejte pravděpodobnost v procentech, že se mu PIN podaří na jeden pokus určit.
Řešení
Pravděpodobnost, že Tomáš určí správně PIN, je 20 %.